

Development Standards & Practices Used
● ISO/IEC/IEEE International Standard - Software and systems engineering

--Software testing --Part 1: General concepts
● ISO/IEC/IEEE International Standard - Systems and software engineering --

Design and development of information for users
● ISO/IEC/IEEE International Standard - Software and systems engineering --

Software testing -- Part 5: Keyword-Driven Testing

Summary of Requirements

● The Discord Bot will be configurable on a class and assignment basis.
● The Discord Bot will be able to download up-to-date student code from Replit.
● The teaching staff will have an easy-to-use interface for updating the bot.
● The Discord Bot will be able to converse with multiple students at a time.
● The Discord Bot will execute tests on the student code.
● The Discord Bot will provide helpful hints to students based on compiler error

messages.
● The project must be completed by the end of Iowa State University's fall 2023

semester.
● The project deployment infrastructure must be capable of running on Iowa State

University Virtual Machines.
● The messages sent by the Discord Bot will support button reactions for

positive/negative feedback.
● The Discord Bot will respond to a student within five seconds.
● The Discord Bot will be capable of escalating the student's request to a professor

if its first attempt receives negative feedback.
● All snippets of code sent by the bot as examples will be written with correct

formatting and spacing to improve readability.
● All bot responses will be easy to understand and formatted in an appealing and

organized manner.

Applicable Courses from Iowa State University Curriculum
● Com S 227
● Com s 228
● Com S 309
● DS 201

● SE 319
● Com S 363
● SE 317
● SE 339
● SE 421

New Skills/Knowledge acquired that was not taught in
courses

● Python
● Docker
● Discord API
● Pycord
● Discord.py
● Webscraping

Table of Contents
1 Team 5

1.1 TEAM MEMBERS 5

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 5

(if feasible – tie them to the requirements) 5

1.3 SKILL SETS COVERED BY THE TEAM 5

(for each skill, state which team member(s) cover it) 5

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 5

1.5 INITIAL PROJECT MANAGEMENT ROLES 5

2 Introduction 5

2.1 PROBLEM STATEMENT 5

2.2 REQUIREMENTS & CONSTRAINTS 5

2.3 ENGINEERING STANDARDS 5

2.4 INTENDED USERS AND USES 6

3 Project Plan 6

3.1 Project Management/Tracking Procedures 6

3.2 Task Decomposition 6

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

3.4 Project Timeline/Schedule 6

3.5 Risks And Risk Management/Mitigation 7

3.6 Personnel Effort Requirements 7

3.7 Other Resource Requirements 7

4 Design 8

4.1 Design Context 8

4.1.1 Broader Context 8

4.1.2 User Needs 8

4.1.3 Prior Work/Solutions 8

4.1.4 Technical Complexity 9

4.2 Design Exploration 9

4.2.1 Design Decisions 9

4.2.2 Ideation 9

4.2.3 Decision-Making and Trade-Off 9

4.3 Proposed Design 9

4.3.1 Design Visual and Description 10

4.3.2 Functionality 10

4.3.3 Areas of Concern and Development 10

4.4 Technology Considerations 10

4.5 Design Analysis 10

4.6 Design Plan 10

5 Testing 11

5.1 Unit Testing 11

5.2 Interface Testing 11

5.3 Integration Testing 11

5.4 System Testing 11

5.5 Regression Testing 11

5.6 Acceptance Testing 11

5.7 Security Testing (if applicable) 11

5.8 Results 11

6 Implementation 12

7 Professionalism 12

7.1 Areas of Responsibility 12

7.2 Project Specific Professional Responsibility Areas 12

7.3 Most Applicable Professional Responsibility Area 12

8 Closing Material 12

8.1 Discussion 12

8.2 Conclusion 12

8.3 References 13

8.4 Appendices 13

8.4.1 Team Contract 13

List of figures/tables/symbols/definitions (This should be the similar
to the project plan)

1 Team

1.1 TEAM MEMBERS

● PATRICK DEMERS

● KYLE ROONEY

● COLE MULLENBACH

● KRISTEN NATHAN

● SOPHIE WATERMAN HINES

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

● Software engineering: developing the Discord bot
● Cybersecurity engineering: developing the Discord bot with user privacy and protection

in mind
● Communication: keeping aligned with client and advisor goals
● Software testing: ensuring proper functionality of the Discord bot
● Documentation: developing written documentation to ensure future users or developers

know how to use the application.
● UX Design: creating the Discord bot interactions to flow naturally for students.

1.3 SKILL SETS COVERED BY THE TEAM

● Software engineering: Kyle Rooney, Kristen Nathan, Sophie Waterman Hines, Patrick
Demers, Cole Mullenbach

● Cybersecurity engineering: Sophie Waterman Hines
● Communication: Kyle Rooney, Kristen Nathan, Sophie Waterman Hines, Patrick Demers
● Software testing: Kyle Rooney, Kristen Nathan, Patrick Demers, Cole Mullenbach
● Documentation: Kyle Rooney, Kristen Nathan, Sophie Waterman Hines, Patrick Demers,

Cole Mullenbach
● UX Design: Patrick Demers

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team plans to use the Agile project management methodology. Since we meet
with our advisor/client weekly, the team will work in one week sprints. During our
weekly meetings, we will refine the backlog and make a plan for the week ahead.

1.5 INITIAL PROJECT MANAGEMENT ROLES

● Cole Mullenbach: Software Engineer/Tester
● Kristen Nathan: Software Engineer/Tester
● Kyle Rooney: Software Engineer/Tester
● Sophie Waterman Hines: Cybersecurity engineer/software engineer
● Patrick Demers: Communication Lead and Software Engineer

2 Introduction

2.1 PROBLEM STATEMENT

Students in beginner programming classes at Iowa State University frequently have
questions about their programming assignments. Since these questions are often repetitive
and asked at odd hours of the day, it can take professors many hours to respond. This delay
disrupts learning and frustrates young students. From the professor's perspective, taking the
time to help each student consumes time from an already filled schedule. The Discord Bot
project attempts to answer student questions immediately, without the need for a professor’s
interaction.

2.2 REQUIREMENTS & CONSTRAINTS

Functional Requirements

● The Discord Bot shall respond to a student within five seconds.
● The Discord Bot shall be configurable on a class and assignment basis.
● The Discord Bot shall be able to download up-to-date student code from Replit.
● The Discord Bot shall be capable of the following:

○ Executing tests on the student code.
○ Providing helpful hints to students based on compiler error messages.
○ Forwarding a student interaction to teaching staff if the bot is unable to assist.

● The teaching staff shall have an easy to use interface for updating the bot.
● The Discord Bot will be able to converse with multiple students at a time.

Resource Requirements

● The project must be completed by the end of Iowa State University's fall 2023 semester.
● The project deployment infrastructure must be capable of running on Iowa State

University Virtual Machines.

Qualitative Aesthetics Requirements

● All snippets of code sent by the bot as examples will be written with correct formatting
and spacing to improve readability.

● All bot responses will be easy to understand and formatted in an appealing and
organized manner.

● All bot reaction prompts will communicate their intent through two methods to prevent
issues with visual impairments.

UI Requirements

● The messages sent by the Discord Bot will support using button reactions for
positive/negative feedback.

● The Discord Bot will be capable of escalating the student's request to a professor if its
first attempt receives negative feedback.

2.3 ENGINEERING STANDARDS

- ISO/IEC/IEEE International Standard - Software and systems engineering --Software
testing --Part 1: General concepts

Testing is something that is inevitable in every software project. Therefore, general concepts
of testing are going to be a standard that aligns very closely with our project. We are going to
have lots of system testing, unit testing, integration testing and user-acceptance testing.

- ISO/IEC/IEEE International Standard - Systems and software engineering -- Design
and development of information for users

This standard aligns well with our project because it establishes what information users
need, how to determine the way in which that information should be presented, and how to
prepare the information and make it available. The main idea for creating our bot is to
convey information to the students in Dr. Zambreno’s class when asked. We need to
implement standards for presenting the information effectively and making it available to
the student when asked.

- ISO/IEC/IEEE International Standard - Software and systems engineering --
Software testing -- Part 5: Keyword-Driven Testing

Our project will involve extensive testing of keywords and phrases which will be the majority
of our input from real life users. This standard will help guide us by providing a reference
approach to implement keyword-driven testing and defining requirements on frameworks
for keyword-driven testing. Ultimately, this standard will help us create keyword-driven test
specifications, create corresponding frameworks, and build test automation based on
keywords within our discord bot testing.

2.4 INTENDED USERS AND USES

CPR E 161 students:

● Will be able to access quick advice/solutions for coding problems.
● Will spend less time waiting for an instructor to be available.
● Will be provided with helpful coding resources via bot commands.
● Will be able to access prior questions and answers.

CPR E 161 instructors:

● Will spend less time answering repetitive questions.
● Will be able to configure the Discord bot for their own questions and answers.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

The agile project management methodology will be used to manage project progress.
Agile will allow the team to make realtime changes to goals based on client feedback. Since
weekly reports and advisor meetings are on a weekly basis, one week sprints will be used.
This will allow the team to quickly address issues or misunderstandings as they arise.

A kanban board on Trello will be used to track team progress within a sprint. Before a
sprint begins, the team will discuss goals for the next iteration and update the Trello board
accordingly. As team members complete tasks, they will move the task to "Awaiting
Feedback." Tasks in this column will undergo code review and functionality testing by
another member of the team. When a task is moved to this column, a message is to be sent
in the team Discord server to request feedback. Conversations coming from this feedback
process should be constructive and thorough. Once the task is completed, it is to be moved
to the completed status in Trello.

3.2 TASK DECOMPOSITION

Task 1 – Research Discord Bots: Understanding how basic bots work.

- Buttons with Discord bots
- Threading with Discord bots
- Ticketing systems with Discord bots
- Reading reactions between Dr. Zambreno and his students
- Understanding how to parse error messages
- Understanding how replit works.

Task 2 – Bot Initialization: Setting up the CPRE 161 bot from scratch.

- Creating a bot from Discord’s website
- Enabling all of the wanted admin features
- Use the given tokens to get the bot up and running
- Set up simple code that gets bot up and running
- Assign the bot to the CPR E 161 class Discord

Task 3 – Bot Implementation: Implementing all of the features we want the bot to be able to
do.

- Button interaction with the bot
- Creating threads with buttons
- Creating a ticketing system
- Student Interactions
- Beautifully parsed error messages
- Access and download files from Replit
- Run test cases from Replit

Task 4 - Deployment Setup: Automatically deploying the code to the virtual machine.

- Setup Docker on the virtual machine
- Create a docker compose file for the bot.

- Setup a CI/CD pipeline in GitLab.
- Setup Grafana for log accessibility.
- Send logs to Grafana using Loki or Prometheus.

Task 5 – Internal Bot Testing: Making sure all implemented features are working correctly.

- Complete manual testing for student user
- Test administrator side of bot

Task 6 – Reiteration: Make fixes and add any more wanted features.

- Refine and clean up code while adding anything extra

Task 7 – Deployment to server: Deploy the bot to the current CPR E 161 class to get more
feedback.

- Make changes based on feedback
- Supervise bot use with students

Task 8 - Automatic Question Answering

- Automatically attempt to help students before pinging a professor.

Task 9 - User Experience/Workflow Optimization

- Improve bot experience.

Task 10 - Professor Controls

- Allow professors to configure assignments and class sessions.

Task 11 - Code Rework and Optimization

- Fix sloppy or unclear code.
- Ensure proper usage of environment variables.
- Dependencies updated.

Task 12 - User Acceptance Testing

- Test with teaching staff to identify workflow problems.
- Test with students to gauge engagement and experience.

Task 13 - Revisions from User Acceptance Testing

- Fix any issues identified during User Acceptance Testing.

Task 14 - Handoff and Documentation

- Document running code, where the codebase is, environment setup, etc.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

In an agile development process, these milestones can be refined with successive
iterations/sprints (perhaps a subset of your requirements applicable to those sprint).

● Opening and closing tickets in our ticketing system
● Being able to use threads
● Adding buttons for user interaction
● Storing ticket information for easy accessibility
● Being able to download and compile Replit files.
● User deployment for testing

3.4 PROJECT TIMELINE/SCHEDULE

In the first semester of the project, the team's focus is on a proof of concept bot. The work
will include creating the ticketing system, basic student assistance, and integrating with
Replit. Additional software infrastructure will be developed to aid in testing, deployment,
and observability. By the end of the first semester, a first version of the bot will be available
in the class Discord server.

The second semester will be aimed at perfecting student interactions, automating answers,
and refining code. The team will also take time to optimize the codebase for extensibility
and readability. Prior to Thanksgiving, we will perform User Acceptance Testing which will
include having Dr. Zambreno, TAs, and students test the bot. Then, a week will be spent
iterating on the feedback received. Lastly, documentation and instructions will be handed
off to Dr. Zambreno to ensure the project can continue to thrive in the future.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

An Agile project can associate risks and risk mitigation with each sprint.

Trying to integrate Replit without an API will have certain risks. This will affect the project's
long term viability as the Replit interface may change with time and affect the effectiveness
of the bot. This has a risk factor of 0.4. Other than that, our project is primarily software
based and does not have much risk involved.

3.6 PERSONNEL EFFORT REQUIREMENTS

Task: Task Time:

Task 1 – Discord Bot Research This task requires the most time for
completion, as deciding which topics to
research and how much time to devote to
each topic may change as the project evolves.
Because of this, an estimated time for this
task is about 60 hours.

Task 2 – Bot Initialization The bot initialization step entails creating the
Discord bot from scratch, including using the
Discord bot API to create a bot API token and
assigning bot permissions. This task will not
require much time, so the time estimate
given is 2 hours.

Task 3 – Bot Implementation Bot implementation will be another time
consuming task project, as it encompasses
the entirety of creating the ticketing system
and thread management system, as well as
reading reactions and storing thread
information. The time estimate for this task is
60 hours.

Task 4 - Deployment Setup Bot deployment setup will require tying many
separate functionalities together. Creating a
completely automated deployment pipeline
with necessary support infrastructure will
take 25-30 hours.

Task 5 – Internal Bot Testing Internal bot testing consists of making sure
the bot features work correctly and are
resistant to incorrect/malicious input. This
task completion time will depend on the
quality of our work in task 3 and testing
methods used, however our estimated
completion time for this task is 15 hours.

Task 6 – Reiteration Reiteration involves refining bot features and
fixing any issues that appeared during bot
testing. Our estimated time for this task is 10
hours.

Task 7 – Deployment to server Deployment to the server involves deploying
the bot to the class discord server. While this
process is short in theory, there is the
possibility that something goes wrong while
trying to deploy the bot (permission issues,
import issues, etc.) Therefore, the estimated
time for this task is 10 hours.

Task 8 - Automatic Question Answering Automatically answering student questions
without professor interaction is difficult since
students ask questions in unique ways.
Research into methods of matching
questions, natural language processing, and

computer algorithms may be necessary. This
portion of the project is estimated to take 80
hours.

Task 9 - User Experience/Workflow
Optimization

While optimizing the user experience, the
team will take a step back to ensure all
aspects of the bot are friendly, easy to use,
and non-obtrusive. This may involve
gathering feedback from peers or professors.
This will take 30 hours.

Task 10 - Professor Controls Professor controls will allow the professor to
manage classes and assignments through
Discord. This is done in an effort to keep
interactions managed through Discord. This
is estimated to take 50 hours.

Task 11 - Code Rework and Optimization As the codebase grows, the team needs to
take time to optimize it - particularly with the
impending handoff to Dr. Zambreno in mind.
This will take approximately 30 hours.

Task 12 - User Acceptance Testing At the conclusion of development efforts, the
team will spend a week on User Acceptance
Testing. This will allow the team to gather
any last feedback of revisions that need to be
made. This is estimated to take 20 hours.

Task 13 - Revisions from User Acceptance
Testing

The team will spend 30 hours making
revisions from the feedback gained during
user acceptance testing in the previous week.
These changes should be relatively minor but
may require swift rework.

Task 14 - Handoff and Documentation At the conclusion of the project, the team will
hand the project over to Dr. Zambreno with
concise, clear documentation.The team will
spend 40 hours performing documentation
and handoff related tasks.

3.7 OTHER RESOURCE REQUIREMENTS

A virtual machine provided by the Electronic Technology Group.

4 Design

4.1 Design Context

4.1.1 Broader Context

Area Description Examples

Public health,
safety, and
welfare

This project aims to make the feedback loop
simpler and faster for both students and
professors. If executed properly, the bot will
increase the mental health of both parties.

Using the bot will help reduce
student anxiety associated with
asking questions. The faster response
times will increase student free time
allowing for more time on healthy
activities.

Global, cultural,
and social

Iowa State works to foster an environment for
learning and inclusion. The bot will carry out
these goals by enabling all students to ask
questions and gain insightful feedback.

As students ask questions at odd
hours of the day, the bot will provide
answers. Additionally, students
uncomfortable speaking English will
have the opportunity to communicate
through a text-based medium.

Environmental The Discord bot will have minimal
environmental impact beyond the electricity
needed to support network transmissions and
the virtual machine's resources.

The impact on the environment will
primarily depend on the energy
sources being utilized to power the
computer equipment. The team will
work to create an efficient bot which
executes as lean as possible to
minimize electricity usage.

Economic This project has minimal economic impact
since the only cost is the virtual machine
provided by the Electronic Technology Group.

The team plans to constrain resources
to the virtual machine and not utilize
any further physical resources in an
attempt to create an economically
viable bot deployment. Economic
impact could be minimized by
spinning the virtual machine down
between semesters.

4.1.2 User Needs

Students in Programming Classes

Students in programming classes need an efficient method to answer questions on homework
assignments because a quick feedback loop improves student learning.

Teaching Staff

Teaching staff need to reduce repetitive student questions because answering the same question
over and over is not an efficient use of time.

4.1.3 Prior Work/Solutions

As Discord is a relatively new medium for student learning, there are fewer relevant projects
than one may expect. Relevant projects include StudyBot and Pymon.

StudyBot aims to enhance the learning experience of students on Discord by providing materials
that may be useful while studying. This bot can provide formula sheets for math, a dictionary for
English, a unit converter for science, and other useful utilities. The interaction style and value
provided by this bot can be used when designing the Discord bot which will help Iowa State
students.

Pymon is a Discord bot which can answer student questions based on a predefined set of
responses. The bot builds its knowledge database from a JSON file. Then, when a student asks a
question, it matches it to the closest related question. This technique could be used by this
senior design project to improve the bot's question/answer abilities.

Both of the previously discussed Discord bots provide great functionality on their own, but do
not provide for the needs of beginner programming students at Iowa State. Other resources the
team has reviewed includes the source code of open source Discord bots since these codebases
provide rich details about bot implementation and design.

4.1.4 Technical Complexity

Components/Subsystems:

● Ability to have automated replies to student questions
● Ability to organize and micromanage conversations
● Ability to create and edit threads in Discord
● Ability to simplify complicated error messages for easy understanding
● Ability to run code and test cases within Replit

The problem scope is specifically designed to aid the students and staff of the CPR E 161
class. There are other Discord bots in the public that are used for educational purposes, but
none of them are designed to help with the particular content of CPR E 161. The group has yet to
discover a Discord bot that is directly integrated with Replit. For our bot to be useful, it will need
to have the ability to run code and test cases within Replit just from a link provided by a student.
This has not been done before based on current research, and will be a challenging task
considering there is no available API for Replit.

4.2 Design Exploration

4.2.1 Design Decisions

1. Ticketing System: The team's design idea to keep track of unresolved problems involves
implementing a ticketing system. Initially a student will ask a question to the bot. The bot
will then attempt to answer the students question automatically. After the bot gives a
solution, the student will then react to the bot by telling it, “yes my question has been
answered”, or “no I need help from the professor”. If the student reacts with “yes my question
has been answered”, then the ticket will be closed. If the student reacts with “no I need help
from the professor” then a ticket will be opened. Next, the professor and TAs will be tagged
and will be able to easily go into Discord and see open tickets which symbolize unanswered
questions. Once the staff helps the student, the ticket will be either closed by a TA or the
professor.

2. Use of threads: The team has decided to handle the extra messages within the Discord
channel by using Discord threads. Discord threads are a way of organizing conversations and
micro managing conversations automatically. Our bot will automatically be creating,
deleting, and talking in threads to help manage the class.

3. Docker: The Discord bot will be deployed using Docker. Docker is a platform that allows
developers to package their applications and dependencies into self-contained containers
that can run on any machine. These containers provide a consistent and reliable
environment for the application to run in, regardless of the underlying infrastructure. This
will make the project more sustainable into the future since the bot can easily be run on
different virtual machines.

4. Programming Language: The Discord bot will be written in Python. Python is a high-level
language known for its simple syntax and variety of third party modules. By using Python,
the project will be easily maintainable by the client.

5. Py-Cord: When building a Discord bot, it is tedious to implement all user interface and
interactions from scratch. The project will use Py-Cord as the primary means to interact
with Discord since it enables quick development and clean code.

4.2.2 Ideation
1. Discord.py: A Python wrapper for the Discord API that allows you to create bots with

features such as message sending, role management, and voice connections.
2. Py-Cord: Another Python wrapper for the Discord API that provides similar functionality to

Discord.py, but with a focus on performance and scalability.
3. Direct API interaction: You can interact directly with the Discord API using HTTP requests

and websockets, without using a wrapper library.
4. Discord Bot Maker: A drag-and-drop interface for creating Discord bots without any coding

knowledge. While not a Python-based solution, it can be used to create bots that interact
with Python scripts or programs.

5. Bot templates: Some developers have shared templates or starter code for creating Discord
bots in Python, which can be used as a foundation for building your own bot.

4.2.3 Decision-Making and Trade-Off

We identified the pros and cons of each ideated option by researching and discussing which
option will be the most useful for our project. Ultimately we did not have to choose just one
method of implementation, but needed to have a plan that made the implementation possible
given the guidelines needed to be followed, along with being as simple and effective as possible.
We decided to use Py-Cord because it is a much better user experience for both the programmer
and user. Py-Cord is also highly scalable with good performance. There are many features within
Py-Cord such as slash commands and views that will make our CPR E 161 Discord bot look more
professional and improve ease of use compared to using direct API interactions or a Discord bot
maker. Our project will also be using Discord.Py as it is a very fundamental wrapper API for
Discord bots. Ultimately, Py-Cord is a newer and improved version of Discord.Py.

4.3 Proposed Design

So far the team has designed a way for the student to efficiently interact with the Discord bot. At
first we tried using the basic Discord.py commands. We implemented the basic commands but
they did not provide us with the ease of use that we were hoping for. We then decided to
implement slash commands from the Pycord library, which allows students to easily understand
what available commands the bot provides. Slash commands also make formatting/inputting
commands extremely simple.

Originally, the group tried using default emoji reactions to react to the bot’s messages. This
worked, but seemed clunky and was not as clear as we wanted the communication to be. Instead
we implemented a view of buttons using the Pycord library which allows us to have a very
organized and professional look that is very portable across our code.

The team has also tried implementing the creation and management of Discord threads.
Recently, the team was able to create threads based on reactions, but still have more
implementation and testing to do in this area.

The group is now starting to implement a ticketing system to make sure that if the bot cannot
help the student that an instructor will be able to get notified and see the issue. Once the ticket
is opened, instructors will be able to communicate with the student until the issue is resolved.

The team is currently working on using a student’s Replit url to download and compile files to
give additional feedback on assignments. This feedback will help students resolve and
understand errors to pass unit tests in order to complete the assignment.

4.3.1 Design Visual and Description

From a high level perspective, the project will consist of five Docker images. The Discord Bot and
Postgres Database will work in tandem to run the Discord Bot. Grafana, Loki, and Prometheus
will provide observability by providing project maintainers with logs and metrics about the
application.

Looking into the finer details of the Discord Bot, there are a few components which will
work together. The request handler will receive all Discord interactions and be responsible
for sending responses. This request handler will interact with the other components to
formulate the responses.

The Replit component is responsible for interacting with Replit which includes maintaining
authentication and fetching student code. When a request is received which requires
fetching code from Replit, the request handler will send the request to the Replit
component. The Replit component will then determine the URL to fetch code from based on
the Replit Username which can be looked up in the Postgres database. The Replit
component will then send a request to Replit to fetch the student's code.

The code processing component is responsible for taking a piece of C code and checking it
for errors and running test cases. The test cases to run will be stored in the database and can
be looked up based on the assignment number and class.

The entire Discord bot will send logs and metrics to Loki and Prometheus respectively. Loki
and Prometheus are data providers for Grafana, which provides an intuitive user interface
for project maintainers to access information about the application.

4.3.2 Functionality

The bot is designed to be used by a student and an admin, the professor or TAs. Students
and admins will be part of a class Discord that will allow students to ask questions of staff.
Students can use the bot as a first step in asking for help. If able the bot will give a solution
to the student or escalate the issue and notify the professor. The bot is also intended to be
used for when the professor is not available to help students. This could be during late hours
of the night or when the professor is too busy to respond. At any time the admin can add or
change bot responses for easier use in the future. The bot will also be able to access a
student's Replit files in order to download and compile the assignments to be able to give
helpful feedback.

The current design satisfies all functional requirements. The bot will be able to use a
ticketing system to help assist students at all times with a variety of ways.

4.3.3 Areas of Concern and Development

One of the groups biggest concerns within the design is, how capable is the bot going to be
when answering questions automatically? For example, when a student has a question as to
why their code is not working, will the bot be able to provide the answer just by being given
the link to the student’s code?

The next concern is if the bot will be able to communicate with the student in a helpful
manner. For example, will the bot be able to give the student enough information so that a
ticket is not always needed to be opened? Will an instructor be needed for every question
still?

4.5 Technology Considerations

Using Python to code our bot:

● Strengths
○ Python is easy to learn and read
○ Python has convenient libraries to use such as Discord.py and Pycord
○ Python has a large community which gives us more material to research

● Weaknesses
○ Some of the simplicity of syntax such as brackets can be confusing for

developers
○ Python has dynamic typing which can lead to runtime errors and bugs
○ In Python, white space matters, which can be a learning curve to developers
○ Python’s interpreter may be slower than compiled languages

● Trade-offs
○ Python is a great choice for ease of use developing, but performance may be an

issue of concern if the code base gets large enough
○ Dynamic typing can be either an advantage or a disadvantage depending on the

programmer

4.6 Design Analysis

The plan that was proposed has been successful. The team is on track to have met all of the
milestones for the given semester. The bot has a well designed response and interaction
system, and a ticketing system using threads which allows the bot to operate without a
database. Instead the bot can get the whole thread and move it into a “Finished Help” text
channel. This way other students can see if they had the same question. The team also
implemented buttons and commands to create and move the threads. Lastly, the entire bot
is in the process of being linked to Replit.

4.7 Design Plan

There will be a few modules needed to meet the requirements of the project. The Discord
bot interaction, Relpit communication, code analysis, and question answering.

The Discord bot interaction has already begun development and meets the core requirement
of being a Discord bot. This module will define the different commands and responses for
the Discord bot.

The Replit communication module will communicate with Replit to fetch user code. This
meets the requirement of building the bot to be integrated with Replit. When a user
command requires information from Replit, the Replit module will be asked to provide the
information.

The code analysis module will take a provided C file and run some analysis on it. This helps
meet the requirement of answering student questions without student interaction.
Examples of output from the code analysis module may include compiling errors or test case
errors.

The questioning answer module will take a student question and respond with an answer
attempt. This meets the requirement of being able to help the student without professor
interaction.

5 Testing

5.1 UNIT TESTING

● Input Commands
○ Dpy Test and Testcord will be used to aid in unit testing. The use of these tools

will allow the team to simulate Discord interactions.
● Student Code Tester and Error Checker
● Replit Fetcher

5.2 INTERFACE TESTING

● Buttons - The team created a small bot to see if we could get buttons to pop up below
the bots response and get the buttons to produce the output or a similar output to what
is needed.

● Command List - Used the same bot to get the whole list of commands that are available
to pop up by just typing the “/” key which is how the bot knows you want to
communicate with it.

● Responses - Asked the bot to give small responses so the team could tweak the way the
response was displayed in discord.

● Threads- Test the ability for the bot to create a thread that adds the proper users to the
new discussion thread.

● Will be using Testcord and dpytest to test these features

5.3 INTEGRATION TESTING

● Database Integration (testing that the bot interacts with the database)
● Replit Integration (testing we can grab what we need from Replit, authentication, code,

etc)
● Conduct load testing to ensure expected traffic

5.4 SYSTEM TESTING

● Connectivity testing - after deployment, the bot needs to be online and connected to
Discord.

● Interaction testing - The bot should be able to interact with students to provide answers
to inquiries. This is where the bot's requirements can be evaluated.

○ Ability for the bot to resolve simple queries without professor interaction.
○ Ability for the bot to create a new thread for the student and professor if the bot

is unable to help.

5.5 REGRESSION TESTING

Whenever new code is introduced to the repository, automated tests will be conducted by
the CI/CD pipeline to ensure previous functionality is not broken. If any features are broken,
the changes will be rejected until the issue is resolved.

In the event bot functionality is found to be broken, the following process will be followed:

● A new failing test case will be written.
● The bug will be resolved in the codebase.
● The originally written test case will be validated to be a passing test case.

ACCEPTANCE TESTING

We will do manual testing ourselves to determine if it works functionally and meets all
non-functional requirements. Then once we determine everything works fine through all
methods of testing listed above then we will deploy our first version to a CprE 161 class for
them to use. This way real users can give us feedback on how helpful the bot is and what
functionalities might need to be added or fixed. The client will be able to see the students
using our first version of the bot in order to make any adjustments or notes. We will also
approve the bot’s functionality with the client before deployment.

5.6 SECURITY TESTING (IF APPLICABLE)

● User account linking will be handled through the user sending a randomly generated
verification code from the discord bot to an assignment created by a Replit bot user.
This process must be secure to prevent students from linking their Discord account to
someone else’s Replit. To test this, we will ensure that the method made to create the
Replit assignment assigns users correctly and will not permit users to add/remove
anyone from the assignment.

● Adding the correct users to bot generated threads is another feature to be security tested
due to wanting to keep these threads confidential until completion. To test this, we will
make sure that our thread generation method cannot be tampered with through user

input (argument checking and input sanitization) and check the thread generation
method to make sure it correctly assigns users to threads.

5.7 RESULTS

Results will be determined at a later time, once the bot's development is more finalized.

6 Implementation
Our implementation plan for the next semester is to finish the bots basic interaction
commands early on in the semester. Our second task is to have the bot completely linked to
Replit. After we have linked to Replit we will move forward in automating solutions to
students’ questions. This will be the most challenging part of the project to implement.
Once we get the automated answering implemented, we will be deploying the bot to Dr.
Zambreno’s CPR E 161 class for testing and live feedback.

7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

Area of
responsibility

Definition NSPE Canon IEEE Canon Analysis

Work Competence Perform work of
high quality,
integrity,
timeliness, and
professional
competence

Perform services
only in areas of
their
competence;
Avoid deceptive
acts

To maintain and
improve our
technical
competence and
to undertake
technological
tasks for others
only if qualified
by training or
experience, or
after
full disclosure
of pertinent
limitations.

The NSPE and
IEEE canons are
similar in the
fact that work is
to be performed
within areas of
their own
competence.
The biggest
difference is
that the IEEE
canon also
brings up the
idea of having
“full disclosure
of pertinent
limitations”

Financial
Responsibility

Deliver products
and services of
realizable value

Act for each
employer or
client as faithful

To reject bribery
in all its forms.

Both NSPE and
the IEEE code of
ethics rejects all

and at
reasonable costs.

agents or
trustees.

forms of bribery
and ask
employers to be
honest and
trustworthy with
financial
responsibility.

Communication
Honesty

Report work
truthfully, without
deception, and
understandable to
stakeholders.

Issue public
statements only in
an objective and
truthful manner;
Avoid deceptive
acts

To be honest
and realistic in
stating claims
or estimates
based on
available
data

The NSPE and
IEEE Canons
both require
engineers to be
honest and
non-deceptive
when reporting
information.
Neither canon
explicitly states
that
communications
must be
understandable
to stakeholders.

Health, Safety,
Well-Being

Minimizes risks
to safety, health,
and well-being of
stakeholders.

Hold paramount
the safety,
health, and
welfare of the
public.

To accept
responsibility in
making
decisions
consistent with
the safety,
health,
and welfare of
the public, and
to disclose
promptly
factors that
might endanger
the public or
the
environment;

The IEEE canon
combines the
NSPE canon
rules with the
rules for
sustainability. In
addition, it
requires the
prompt
disclosure of any
information that
could impact the
public or
environment;
however, the
IEEE canon does
not mention
anything
regarding the
well-being of
stakeholders.

Property
Ownership

Respect property,
ideas, and
information of
clients and
others.

Act for each
employer or
client as faithful
agents or
trustees.

To seek, accept,
and offer honest
criticism of
technical work,
to acknowledge

The property
ownership canon
for all three code
of ethics involve
the respect of

and correct
errors, and to
credit properly
the
contributions of
others;

other intellectual
property,
however the
IEEE also
includes being
honest about
work criticism
and providing
credit for the
work of others.

Sustainability Protect
environment and
natural resources
locally and
globally.

DNE To accept
responsibility in
making
decisions
consistent with
the safety,
health, and
welfare of the
public, and to
disclose
promptly
factors that
might endanger
the public or
the
environment;

The IEEE canon
describes that we
must take into
consideration the
sustainability of
mankind. Not
allowing us to
create something
that would turn
into an
existential
disaster.

Social
responsibility

Produce
products and
services that
benefit society
and communities

Conduct
themselves
honorably,
ethically, and
lawfully so as to
enhance the
honor,
reputation, and
usefulness of the
profession.

To treat fairly all
persons and to
not engage in
acts of
discrimination
based on
race, religion,
gender,
disability, age,
national origin,
sexual
orientation,
gender
identity, or
gender
expression;

NSPE requires all
individuals to act
honorably and
lawfully. In the
IEEE code of
ethics they write
out more directly
that individuals
should treat each
other fairly and
not discriminate
based on any
identity. Both
require each
other to be
honorable and
respectful to all
people.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Financial Responsibility applies to this project as minimizing deployment costs helps sustain
the Iowa State economy. By releasing the bot at a low cost, the university will improve
student experience and retention, which helps improve financials. This canon is met by the
team at a medium level as financial responsibility is kept in consideration, but not the top
concern.

Social responsibility applies to the Discord Bot as the primary goal is to improve the lives of
students and instructors for CPR E 161. Our team meets social responsibility standards to a
high degree since the primary goal throughout design and implementation has been the
betterment of the lives of the bot's users.

Work Competence applies to our project because we all have to be capable of creating such a
program. We have to be confident that we can create a program that is able to do what is
asked without being put in a situation that would result in us creating something that could
be twisted to use for harm. Our team is performing at a high level in this area.

Sustainability does not apply to our project since we are creating a discord bot that will not
be a physical item. This means we won’t be interacting with the environment or any natural
resources. We can choose not to use a high volume of memory or storage to lower
environmental impact but that does not affect sustainability as much as physical items. This
is a low level performance item for our team since our development and design of the
discord bot will not affect sustainability or natural resources.

Health, Safety, Well-Being does not largely apply to the discord bot because it will not have
the power to harm or endanger anyone. As a software project it does not have the capacity to
affect the general public or users in a harmful way. This is a low level performance for our
team since it is not very applicable to our design.

Property Ownership applies to our project in more than one way. Our team is performing at
a high level for this area of professional responsibility. Relating to our client, we need to
respect his wants/needs. Dr. Zambreno was also kind enough to share access to the CPR E
161 Repl.it which gives us the power to negatively impact his work. We also have access to the
CPR E 161 Fall semester’s discord which includes messages between other Iowa State
Students and Dr. Zambreno. We also need to credit others with work that we use from them
throughout this project.

Communication Honesty applies to our project due to our responsibility to properly inform
our advisor, Dr. Zambreno, on the status of our project. Since advisor communication allows
us to determine project choices and outcomes, we perform this at a high level.
Communicating what we believe is possible with our discord bot, time frames in which we
believe feature completion is possible, and using objective analysis to make decisions on
future endeavors falls into the canons for NSPE and IEEE.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Work competence is an area of professional responsibility that is important to our project
and our team has demonstrated a high level of proficiency in our project. To our project,
work competence means that we will all work together and get everything completed to the
best of our ability. With nearly everything in our project being software based, it is very easy
for us to stay in our area of expertise.

8 Closing Material

8.1 DISCUSSION

The result of our project is to give CprE 161 students another resource to use for help on their
programming projects. The Discord Bot will act as an item for students to use and ask
questions of when they need help. The bot will be able to help solve compiler issues, give
resources for more information, and escalate issues to the TAs or professor when necessary.
At this moment in our project we have been able to implement threading, user reactions,
escalating issues, and creating a collection of commands that can be used on the bot. The
Discord Bot is not entirely finished at this time. We are hoping to implement a Replit
interface to be able to download and compile files next semester. As for our current state,
the project has been successful and will be able to meet all requirements going forward.

8.2 CONCLUSION

This semester we have completed research, deployment, creating an architecture, as well as
connecting our bot to discord. We’ve completed a multitude of commands that will be used
with the bot as well as organizing communication between the bot and students with
threading and reactions. Our goals moving forward are to keep implementing commands
and the Replit integration. We are going to keep using an agile work environment to make
progress on our future goals. Weekly reports and meetings as a team will keep us centered
on our goals. We were unable to achieve these goals yet since we spent a large amount of
time researching and implementing higher priority items.

8.3 REFERENCES

“Add StudyBot Discord Bot: The #1 Discord Bot List.” Add StudyBot Discord Bot | The #1
Discord Bot List, https://top.gg/bot/840063974858162216.

Grifski, Jeremy. “Meet Pymon: A Discord Bot That Can Answer Any Question You Want.”
The Renegade Coder, The Renegade Coder, 7 Apr. 2022,
https://therenegadecoder.com/teach/meet-pymon-a-discord-bot-that-can-answer-any-qu
estion-you-want/.

8.4 APPENDICES

8.4.1 Team Contract

Team Members:

1) Patrick Demers

2) Sophie Waterman Hines

3) Cole Mullenbach

4) Kyle Rooney

5) Kristen Nathan

Team Procedures

Day, time, and location (face-to-face or virtual) for regular team meetings: Thursdays at 3:00
PM virtually.

Preferred method of communication updates, reminders, issues, and scheduling: Discord

Decision-making policy: Majority vote

Procedures for record keeping: Kyle will write down meeting notes within a Discord channel
named “meeting-notes.” The minutes will also be included in this channel for each meeting.

Participation Expectations

Expected individual attendance, punctuality, and participation at all team meetings:

We expect every member to attend every meeting. We have set up our meeting time so
everyone is available to attend. If there are any complications about attending a meeting, it
needs to be relayed to the rest of the team. Each member is also expected to discuss what
they have been doing, what they plan to do, and converse in all discussion/decision making.

Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
Each member will be responsible for fulfilling their team assignments before the due date.

Expected level of communication with other team members: We expect each member to
actively talk in Discord weekly. Each member needs to join in on discussion and decision
making in meetings.

Expected level of commitment to team decisions and tasks: Each member needs to have a
vote in team decisions.

Leadership

Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

● Patrick - Technical Analyst, Team Lead
● Sophie - Documentation, Cyber Security, Testing
● Kyle - UX Design/Interactions, Communication
● Kristen - UX Design/Interactions, Testing
● Cole - Technical Analyst, Testing, Web Admin

Strategies for supporting and guiding the work of all team members: The team plans to use
agile to keep our work organized. Agile will also allow us to always have a list of things to
work on and keep things organized. If any member is having issues, they will be able to
reach out to the team through our Discord channel.

Strategies for recognizing the contributions of all team members: Within the agile board, we
will be able to see who has completed cards. We will also be able to see code contributed to
the gitLab repository.

Collaboration and Inclusion

Describe the skills, expertise, and unique perspectives each team member brings to the
team.

● Kristen Nathan: I have a background in computer engineering including software
development and electrical engineering. I have previous experience with automation
writing in python as well as writing scripts that use flags/tags to get information from
the user.

● Sophie Waterman Hines: As a cybersecurity engineering student, I have a large
background in securing applications and addressing potential security issues. I also have
experience with python and some experience with discord bots.

● Patrick Demers: As a software engineering student, I have built various types of software
through my internships, side business, and open source contributions. By leveraging this
past experience, I hope to help the team focus on writing an extensible, well-designed
Discord bot.

● Cole Mullenbach: I am a software engineering student and I have had a lot of full
application programming experience however this is going to be a new experience as I
have not made a discord bot and I have not worked with python at a high level like this.
I have the basics of python from outside of the classroom projects. I am always in
discord whether it be for school or for video games and the bots are great. I am excited
to work on this project.

● Kyle Rooney: I have experience with software related projects and have many team
management skills. I have a little experience in Python and have been using discord for
3-4 years now. I have worked with teams of all sorts through software projects at ISU,
FFA, and sports. I try my best and value being a good leader and teammate.

Strategies for encouraging and support contributions and ideas from all team members:

Have an open safe discussion that allows everyone to give ideas without fear of being judged.
Allow each other to have kind and helpful criticism to get the best solution to any problems
and reach a compromise. Have the mindset of “all ideas are good ideas”.

Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)

If a team member disagrees with the way a task is being handled or is having issues related
to a team decision, it should be brought up during a weekly team meaning. After the team
understands where the problem is being had, we will work to reach a compromise or make
changes to the established plan.

Goal-Setting, Planning, and Execution

Team goals for this semester:

This semester, the team desires to understand how the bot should interact with its users. By
the end of the semester, the plan is to have a prototype of the bot completed, and begin
testing the bot on sample student interactions. During the second half of this semester, the
class the Discord bot aims to help will be in session. The team plans to monitor the student's
progress throughout the course and document areas the bot may be able to assist.

Strategies for planning and assigning individual and team work:

Discuss as a team how individual work will be split up and let each other choose the
portions of the work they desire to work on.

Strategies for keeping on task:

Communicate with each other weekly and set a timeline for individual parts to be
completed.

Consequences for Not Adhering to Team Contract

On a team member's first two infractions of this contract, the team will communicate what
expectations are not being fulfilled to the problematic team member. In coming weeks,
the team will attempt to reach out to the team member to help ensure they are staying
on track.

If problems continue after the initial warnings, the team will continue to attempt to support
the team member in question. At this time, the team will alert Dr. Zambreno and
Professor Shannon as continued lack of involvement may jeopardize the project.

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) __________Kyle Rooney______________________________ DATE __2/19/23__________

2) ________Kristen Nathan______________________________ DATE __2/19/23__________

3) ________Sophie Waterman Hines______________________ DATE __2/19/23__________

4) _______Patrick Demers______________________________ DATE ___2/19/23_________

5) ______Cole Mullenbach______________________________ DATE __2/19/23__________

